Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2237813

ABSTRACT

BACKGROUND: The rapid emergence of the omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the WHO. Subsequently, omicron evolved into distinct sublineages (e.g. BA1 and BA2), which currently represent the majority of global infections. Initial studies of the neutralizing response towards BA1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (IgG) binding, ACE2 (Angiotensin-Converting Enzyme 2) binding inhibition, and IgG binding dynamics for the omicron BA1 and BA2 variants compared to a panel of VOC/VOIs, in a large cohort (n = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While omicron was capable efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to WT. Whereas BA1 exhibited less IgG binding compared to BA2, BA2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to omicron only improved after administration of a third dose. CONCLUSION: omicron BA1 and BA2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind omicron. The extent of the mutations within both variants prevent a strong inhibitory binding response. As a result, both omicron variants are able to evade control by pre-existing antibodies.

2.
Sci Rep ; 12(1): 19858, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2133587

ABSTRACT

SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96-100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Neutralization Tests , Antibodies, Viral , COVID-19 Vaccines , RNA, Messenger , Ad26COVS1 , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL